Intensive nursery of the Pacific White Shrimp *Litopenaeus vannamei* in greenhouse-enclosed raceways using low and high-protein diets under no water exchange

Eudes S. Correia, Tzachi M. Samocha, Joshua S. Wilkenfeld, Timothy C. Morris, and Liuzhi Wei

AgriLife Research Mariculture Laboratory at Flour Bluff
4301 Waldron Road, Corpus Christi 78418, Texas

Aquaculture 2010
San Diego, Mar 1-5
Introduction

- Traditional shrimp farming greatly relies on water exchange to maintain water quality
- This has resulted in massive crop losses due to disease outbreaks and to the degradation of receiving steams
- Raising SPF shrimp under biosecure conditions, minimizing the use of potentially contaminated water, and reducing or eliminating effluents can greatly improve shrimp farming sustainability
Introduction

- Previous studies have indicated good shrimp yields using low water exchange practices.
- Because feed is the major driving force of intensive production systems, it is important to optimize its use to maximize growth and minimizing water quality deterioration.
- In limited or no water exchange systems, feed quality and its effect on the culture medium can play a major role in shrimp performance.
Objectives

A 62-d trial was conducted with postlarvae of the Pacific White Shrimp, *Litopenaeus vannamei* to improve feed management and water quality during the nursery phase under no water exchange.

Specific objectives were:

1. To determine the effect of substituting high-protein for low-protein feed on shrimp growth, survival and selected water quality indicators.
Objectives

2. To determine if molasses can be used to prevent ammonia and nitrite build up in a zero exchange system

3. To study the effect of no exchange on water quality and shrimp performance

4. To evaluate the benefit of using a continuous dissolved oxygen monitoring system as a management tool
Material & Methods

- The study was carried out in four 40 m3 (68.5 m2) EPDM lined greenhouse-enclosed raceways (RW) at the Texas AgriLife Research Mariculture Laboratory, Corpus Christi, TX

- Each RW was equipped with a center longitudinal fiberglass partition positioned over a 5.1 cm PVC pipe with sprayer nozzles
Material & Methods

- Each RW had eighteen 5.1 cm airlifts, and six 1m long air diffusers for mixing and circulation.
- Airlifts & diffusers were positioned equally throughout the RWs and were operated continuously using a 3 hp regenerative blower.
- In addition, each RW had, a centrifugal 2 hp pump and a Venturi injector.
Material & Methods

- The Venturi was capable of injecting atmospheric air or a mixture of oxygen and air.
- Dissolved oxygen was continuously monitored in each RW by a YSI 5200 Recirculating System Monitor.
Material & Methods

- Raceways were filled with natural seawater, chlorinated to 10 ppm, and dechlorinated by aeration.
- Salinity was adjusted to 30 ppt using municipal freshwater.
- TSS & VSS were controlled by using foam fractionators.
Material & Methods

- Each RW was fertilized with 225 g urea, 32 ml phosphoric acid and 290 g sodium silicate.
- The following day they were inoculated with *Chaetoceros muelleri* (70,000 cells/mL).
- Each RW was stocked (5,000 PL/m³), a day after the algae inoculation, with ten to twelve-day-old postlarvae (PL₁₀-₁₂) *L. vannamei*.
Material & Methods

- From Day 10 through Day 18, each RW received 500 mL of molasses every other day to promote bacterial floc development.
- From Day 19 on, molasses supplementation was based on the ammonia level using 6 g of carbon for each 1 g of ammonia found in the culture medium as described by Samocha et al. (2007).
- From Day 30 until termination no molasses was added as ammonia concentrations were consistently below 0.5 mg/L.
Material & Methods

- PL were fed newly hatched *Artemia* nauplii (~40/PL/d for four days)
- For the first 26 days PL were fed a combination of dry diets to include: PL Redi-Reserve (Zeigler Bros. Inc.); Surestart #3 & #4 (Salt Creek Inc.); and Fry #0 & #1 (Rangen Inc.)
- Shrimp were sampled twice/wk to monitor health and growth and to adjust daily rations
Material & Methods

- Beginning Day 27, shrimp in two RWs were fed 30% CP Rangen Fry #2 while those in the other two RWs were fed Fry #2 with 40% CP
- Diet particle size was increased to Fry #3 and #4 according the shrimp size
- Rations ranged from 50% of the total estimated shrimp biomass for the first days after stocking to 4% of the estimated biomass during the final week of the trial
Material & Methods

- Rations were adjusted based on feed consumption
- Feed was distributed by hand four times per day
- During the last 18 days of the study, an additional feeding (30% of total daily ration) was delivered by three belt feeders/RW
Material & Methods

- Temperature, dissolved oxygen, pH, salinity, and algal cell density were monitored daily.

- Turbidity, alkalinity, and settleable solids (SS) were monitored every other day.

- TAN, NO$_2$, NO$_3$, PO$_4$, cBOD$_5$, TSS, and VSS were monitored once a week.
Material & Methods

- Data was analyzed using SPSS statistical software.
- Repeated measures ANOVA was used to determine significant differences between treatments in water quality indicators.
- One way ANOVA was used to determine differences between treatments in survival, mean final weights, FCR, and yields.
- All differences were analyzed at significance level of $\alpha = 0.05$.
Results

- No statistically significant differences were found between the two treatments in temperatures, DO, and pH.
- Statistically significant differences were found between treatments in alkalinity and nitrate-N.
- No statistically significant differences were found between treatments in mean final weight of the shrimp.
Results

Means for water quality indicators monitored during a 62-d nursery trial

<table>
<thead>
<tr>
<th>Variables</th>
<th>Low Protein (30%)</th>
<th>High Protein (40%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AM</td>
<td>PM</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>27.6</td>
<td>28.7</td>
</tr>
<tr>
<td>DO (mg/L)</td>
<td>5.7</td>
<td>5.7</td>
</tr>
<tr>
<td>pH</td>
<td>7.5</td>
<td>7.4</td>
</tr>
<tr>
<td>Salinity (ppt)</td>
<td>31.2</td>
<td>29.3</td>
</tr>
<tr>
<td>Turbidity (NTU)</td>
<td>163.9</td>
<td></td>
</tr>
<tr>
<td>Settleable solids (mL/L)</td>
<td>5.9</td>
<td>6.8</td>
</tr>
<tr>
<td>Algae (cell/mL x 10⁴)</td>
<td>242.7</td>
<td>193.8</td>
</tr>
</tbody>
</table>
Results

Means for weekly water quality indicators during a 62-d nursery trial

<table>
<thead>
<tr>
<th>RW</th>
<th>cBOD₅</th>
<th>TAN</th>
<th>NO₂-N</th>
<th>RP</th>
<th>TSS</th>
<th>VSS</th>
<th>Alk</th>
</tr>
</thead>
<tbody>
<tr>
<td>30%</td>
<td>18</td>
<td>0.85</td>
<td>4.15</td>
<td>3.1</td>
<td>223</td>
<td>115</td>
<td>155<sup>a</sup></td>
</tr>
<tr>
<td>40%</td>
<td>19</td>
<td>0.75</td>
<td>5.8</td>
<td>3.9</td>
<td>208</td>
<td>108</td>
<td>145<sup>b</sup></td>
</tr>
</tbody>
</table>
Weekly variations in water quality of the raceways during a 62-d nursery study using low (30% CP) and high-protein (40% CP) feeds.
Weekly variations in water quality of the raceways during a 62-d nursery study using low (30% CP) and high-protein (40% CP) feeds.
Results

Summary by treatment of shrimp performance criteria at the end of 62-d nursery trial

<table>
<thead>
<tr>
<th>Variables</th>
<th>30% CP</th>
<th>40% CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final weight (g)</td>
<td>0.94 ± 0.00</td>
<td>1.03 ± 0.02</td>
</tr>
<tr>
<td>SGR (%/day)</td>
<td>11.03 ±0.01</td>
<td>11.19 ±0.05</td>
</tr>
<tr>
<td>Survival (%)</td>
<td>82.29 ±11.26</td>
<td>84.13 ±6.07</td>
</tr>
<tr>
<td>FCR</td>
<td>0.91 ± 0.05</td>
<td>0.82 ± 0.05</td>
</tr>
<tr>
<td>Yield (kg/m³)</td>
<td>3.70 ± 0.49</td>
<td>4.18 ± 0.23</td>
</tr>
</tbody>
</table>

High consumption of natural food

Low FCR
Conclusions

- No significant differences in shrimp performance when fed the low-protein diet (30% CP) compared to high-protein feed (40% CP)
- The higher levels of nitrate and nitrite found in the high-protein diet are most likely because of the higher nitrogen content of the feed
- Molasses can be used to enhance development of bacterial floc and to prevent ammonia build up in the culture medium
- Molasses supplementation was not effective in preventing nitrite build up
Acknowledgements

- Funding: Texas AgriLife Research; USAID, The National Academy of Sciences; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES); Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
- Feeds: Zeigler Bros. & Rangen Inc.,
- PL Supply: Harlingen Shrimp Farms
- DO monitoring systems: YSI Inc.
- Foam fractionators: Aquatic Eco System
- Air diffusers: Colorite Plastics
- RWs liner: Firestone Specialty Products