
Robert Bowling1, Michael Brewer2, Levi Russell3, and Mac Young3

1Texas A&M Agrilife Extension Entomology, 2Texas A&M Agrilife Research Entomology, 3Texas A&M Agrilife Extension Economics

ABSTRACT: Sorghum is a low-input, low risk crop making it an attractive companion to cotton and corn, especially in water-limited environments. Arthropods may challenge sorghum as a production option, especially when multiple insecticide applications are needed to manage pests. We evaluated performance of selected insecticides to control several pest complexes occurring on sorghum during head development. Results and economic evaluations of treatments are reported. Results and economic evaluations of treatments are reported.

INTRODUCTION: Sorghum production in Texas accounts for 35% of harvested acres and 32% of production in the United States. In 2013, a new aphid pest, the sugarcane aphid (SCA), *Melanaphis sacchari* (Zehntner) was found damaging sorghum near Beaumont, TX. The aphid quickly expanded its range to include all sorghum production in TX as well as sorghum production across other sorghum production regions in the United States. SCA adds to the list of potential economic pests of sorghum. Managing multiple pests individually reduces profitability. As a traditional low-input crop, addressing the pests in combination is desirable whenever possible.

ABSTRACT: Sorghum is a low-input, low risk crop making it an attractive companion to cotton and corn, especially in water-limited environments. Arthropods may challenge sorghum as a production option, especially when multiple insecticide applications are needed to manage pests. We evaluated performance of selected insecticides to control several pest complexes occurring on sorghum during head development. Results and economic evaluations of treatments are reported. Results and economic evaluations of treatments are reported.

INTRODUCTION: Sorghum production in Texas accounts for 35% of harvested acres and 32% of production in the United States. In 2013, a new aphid pest, the sugarcane aphid (SCA), *Melanaphis sacchari* (Zehntner) was found damaging sorghum near Beaumont, TX. The aphid quickly expanded its range to include all sorghum production in TX as well as sorghum production across other sorghum production regions in the United States. SCA adds to the list of potential economic pests of sorghum. Managing multiple pests individually reduces profitability. As a traditional low-input crop, addressing the pests in combination is desirable whenever possible.

RESULTS: Scouting revealed only the head infesting insects sorghum headworm (0.8 medium and large worms/head) exceeded economic thresholds and rice stinkbug (22,500 per acre) were at a sub-economic threshold. Insecticides and rates evaluated for these two pests are presented in Table 1.

Insecticide treatments did not reduce stinkbug populations below those on the untreated check at 7-days post-treatment (df=8, 24; F-Value=1.35; P=0.2672) or 14-days post-treatment (df=8, 24; F-Value=1.42; P=0.2383). Yield response to insecticides was not detected in this study (df=8, 24, F-Value=2.23, P=0.0611).

ACKNOWLEDGEMENTS: We thank the Texas Sorghum Board, Dow AgroSciences, Bayer CropSciences, and DuPont for financial support of this research. Rudy Alaniz and Clint Livingston are thanked for establishment of this trial and making insecticide applications.