Development of a Ground-Based Platform for Plant Phenotyping and Crop Management Decisions

Murilo Maeda, Juan Landivar, Josh McGinty, Jinha Jung, Anjin Chang, Ruizhi Chen, Tianxing Chu, and Juan Enciso
Introduction

Objectives:

• Affordable advanced sensor technology

• Flexible platform

• High-throughput data collection

• Field mapping, phenotyping, and precision management decisions
What are we looking for & why?

- Canopy temperature
- Plant water status
- Plant growth rates
- Plant morphology
- Photosynthetic efficiency
- Indicators of plant stress

WHY?

Plant performance = YIELD

Images: Fahlgren et al. 2015
Applications

- Genotype evaluation
- Insect resistance
- Disease resistance
- Earliness
- Stress tolerance (e.g. drought)
- Irrigation water
- Fertilizer
- Growth regulator
- Disease / Insects
- Weeds
Platform & Sensors

- Spider (Lee Co., Idalou, TX)

- Infrared Radiometer SI-111 (Apogee Instruments, Inc., Logan, UT)

- NDVI
 - Decagon SRS (Decagon Devices Inc., Pullman, WA)
 - GreenSeeker (Trimble Navigation Limited, Sunnyvale, CA)

- Sonar ranging (Plant height)
 - SR50A (Campbell Scientific Inc., Logan, UT)
 - TS14 (Senix Co., Hinesburg, VT)
 - MB7092 (MaxBotix Inc., Brainerd, MN)

- Global Positioning System
 - Trimble
 - Garmin
The System

- Ultrasonic Sensor
- Multi Spectrum
- Infrared Canopy Temperature
- GPS Antenna
- Air T & RH Sensors
Data Collection / Sync

Data Match by GPS time

Trimble (Nomad 900)

CR100 (Datalogger)

GPS Receiver (GPS16X-HVS)

Sonic ranging (TS14, SR50A, MB7092)

Infrared Temp. (SI-111)

Multi-spectral (SRS)

GPS Receiver (AgGPS 162)

Air Temp. + RH (HC2S3)

Multi-spectral (GreenSeeker)
Monster Trial (NDVI) – 6/26/2015
Differences in GPS Accuracy

Trimble - GreenSeeker

Garmin - Decagon
Monster Trial (NDVI) – 7/17/2015

* Bars represent ± SE
SR50A: Tape vs. Sensor (Stationary)

<table>
<thead>
<tr>
<th>Measuring tape (cm)</th>
<th>Sensor (cm)</th>
<th>Tape</th>
<th>Sensor</th>
<th>Diff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>70</td>
<td>89.9</td>
<td>91.8</td>
<td>-1.9</td>
</tr>
<tr>
<td>75</td>
<td>75</td>
<td>90.6</td>
<td>92.8</td>
<td>-2.2</td>
</tr>
<tr>
<td>80</td>
<td>80</td>
<td>91.3</td>
<td>93.5</td>
<td>-2.2</td>
</tr>
<tr>
<td>85</td>
<td>85</td>
<td>92.0</td>
<td>94.2</td>
<td>-2.2</td>
</tr>
<tr>
<td>90</td>
<td>90</td>
<td>92.7</td>
<td>94.9</td>
<td>-2.2</td>
</tr>
<tr>
<td>95</td>
<td>95</td>
<td>93.4</td>
<td>95.6</td>
<td>-2.2</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>94.1</td>
<td>96.3</td>
<td>-2.2</td>
</tr>
<tr>
<td>105</td>
<td>105</td>
<td>94.8</td>
<td>97.0</td>
<td>-2.2</td>
</tr>
<tr>
<td>110</td>
<td>110</td>
<td>95.5</td>
<td>98.2</td>
<td>-2.7</td>
</tr>
</tbody>
</table>

- **Left Sensor**
 - Average: 91.8
 - Standard Deviation: 6.8

- **Right Sensor**
 - Average: 92.8
 - Standard Deviation: 7.0

Graph:

- Blue diamonds: Left sensor
- Red squares: Right sensor

Graph Legend:

- Left sensor
- Right sensor
Plant Height (Peppers in 20cm beds)

Data points

Soil surface

Plant height (m)

Data points

AgriLIFE RESEARCH
Texas A&M System
Sonic Ranging - Simulated

Ground Platform Moving Direction

Sonar sensor: Measurement frequency up to approx. 50 Hz
LiDAR - Simulated

Ground Platform Moving Direction

LiDAR sensor: Measurement frequency = 200 Hz
Conclusions

• Sensors are reasonably priced
• There is still a lot of manual data sorting
• Garmin GPS receiver does not provide high enough accuracy
• NDVI measurements from GreenSeeker are consistent
• Sonic ranging may be replaced by LiDAR
What is next?

• Increase data collection (to match UAS)

• Integrate Trimble system into the CR1000

• Replace sonic ranging sensors

• LiDAR likely to increase:
 – Plant height measurement accuracy
 – Data throughput
Thank You!

- Dr. Juan Landivar
 Texas A&M AgriLife
 Corpus Christi

- Dr. Jinha Jung
 Texas A&M
 Corpus Christi

- Dr. Ruizhi Chen
 Texas A&M
 Corpus Christi

- Dr. Anjin Chang
 Texas A&M
 Corpus Christi

- Andrea Maeda, M.Sc.
 Texas A&M AgriLife
 Corpus Christi

- Dr. Josh McGinty
 Texas A&M AgriLife
 Corpus Christi

- Dr. Chenghai Yang
 USDA-ARS
 College Station

- Dr. Juan Enciso
 Texas A&M AgriLife
 Weslaco

- Dr. Tianxing Chu
 Texas A&M
 Corpus Christi

Recommended Presentations:
- Dr. Juan Landivar
- Dr. Jinha Jung
- Dr. Anjin Chang
- Dr. Ruizhi Chen